escapistus (escapistus) wrote,
escapistus
escapistus

Наука vs лженаука

Оригинал взят у m_kalashnikov в "Академгейт": дело о шпинели (1)
Максим Калашников

ДЕЛО О ШПИНЕЛИ
Продолжая расследование «Академгейта»

Серьезная болезнь отечественной науки через призму «дела о прозрачной броне».
.

ХРАБРОСТЬ ХАЧАТУРА БАГДАСАРОВА

Образцы поликристаллической шпинели передали в Институт кристаллографии РАН в декабре 2009 года по распоряжению главы Военно-промышленной комиссии при правительстве РФ, на тот момент – вице-премьера С.Иванова. Это были образцы прозрачных ракетных обтекателей, ихготовленных частным институтом Виктора Петрика. Проанализировать их состав и дать заключение по образцам поручили признанному специалисту: члену-корреспонденту РАН Хачатуру Багдасарову.
Причем с откровенно издевательскими комментариями. Дескать, это, кажется, и не шпинель вовсе. В общем, урой этого мошенника и шарлатана. Такой враждебной позицией отличился и сам Институт кристаллографии.
Х.Багдасаров провел исследование образцов и смело заявил: перед нами – действительно качественная поликристаллическая шпинель. Он даже не поленился сам съездить к Петрику и посмотреть, как делается не моно-, а именно поликристаллическая шпинель.
Хачатур Багдасаров – выдающийся ученый, первым в мире вырастивший чистый, совершенный кристалл (1964 г.) не по вертикали, а по горизонтали, в молибденовой ванне. Работал в тесном сотрудничестве со знаменитыми Прохоровым и Басовым, создателями лазера. Создавал рабочие тела для твердотельных (итирий-алюминиево-гранатных) лазеров.
Его досье:
Родился 21 мая 1929 г. в Самарканде. В 1951 - окончил Московский институт стали и сплавов. В 1964-1987 - заведующий отделом кристалловедения АН СССР. Заведуюющий отделом Института кристаллографии АН СССР/РАН.
Труды - по физике кристаллов.Первым доказал, что твердость выращивае-мых кристаллов зависит от частот сверхзвуковых колебаний полей. Предложил новые методы выращивания моно- и поликрис¬талльных структур, их укрепления и обра¬ботки. В Армянской ССР под его руководством было создано промышленное производство лазера.
Координационный руководитель научно-исследовательских работ в области выращивания монокристаллов в СССР. Член-корреспондент АН СССР/РАН с 1991 г. Лауреат Госпремии СССР в 1972 г., Госпремии РФ в 2010-м.
Революционная технология Багдасарова признана во всем мире.
Когда в январе 2010 года Хачатур Багдасаров провел анализ и заявил: это – поликристаллическая шпинель, обладающая пулестойкостью, пропускающая инфракрасное и ультрафиолетовое излучение, годная для обтекателей ракет «земля-воздух» и «воздух-воздух», началась истерика. И в ВПК, и в РАН. Мол, Петрик не мог это сделать, он явно где-то украл эту шпинель! Поездка Багдасарова к самому Петрику показала: у Мастера есть это производство.
. Тогда на Багдасарова стали откровенно давить: не давай документы анализа Петрику. Но Багдасаров, которого самого в семидесятые и даже всьмидесятые годы обвиняли в лженауке, на всех наплевал и документы В.Петрику передал.
Мне хорошо известно о мытарствах самого Багдасарова с его технологией: как его обзывали лжеученым даже после получения Госпремии 1972 года, как теоретики с презрением называли его «технологом» и не пытались разобраться в сути его технологии. Хотя у Багдасарова были и патент, и купленная японцами еще в 60-х лицензия, и развернутые в СССР производства по его технологии. Есть даже ныне работающая фирма «Багдасаров Кристал Груп» (http://www.bagdasarovcrystals.com/v1/) в Женеве, которая до сих пор его приглашает. Кто-кто, а Багдасаров знает цену некоторым «теоретикам» из Академии и ее «беспристрастность».
Но к этой теме мы вернемся дальше. А пока зафиксируем: в РФ давно есть технология создания прозрачной брони, которая пропускает ИФ и УФ-излучение. И сделана она коллективом Виктора Петрика.

НАЧАЛОСЬ ВСЕ С ОПАЛА


Когда Мастер занялся камнями? В восьмидесятые, когда отбывал свой тюремный срок в Сибири. На зоне он был на особом положении, ибо многое умел. Имелась у него и своя лаборатория. Вернее, целый дом и лаборатория в одном обличье. Ведь не для кого не тайна, что тот осужденный получает необычный статус на «зоне», кто обладает необычными умениями. А Мастер на то и был Мастером: конструировал, делал дорогие скрипки, а потом вот и драгоценными камнями занялся.
Именно за колючей проволокой он и вырастил черный опал, копию опала герцого Девонширского, в сто карат. По классической, можно сказать, золь-гель технологии. Это когда сначала составляющие камня приводятся в состояние высокодисперснго коллоидного раствора – золя, после чего, из-за слипания частиц, он превращается в гель. Ну, а потом гель, удаляя из него жидкость, превращают в твердое тело.
То был первый успех Мастера на одном из самых интересных направлений. Тогда искусственный черный опал отправили на экспертизу, и она показала, что камень, дескать – природный, австралийского происхождения. И, как рассказывает сам Виктор Иванович, выращенный им опал вскоре продали за границу некие неведомые, но влиятельные люди, хорошо заплатив при этом талантливому «зека». Естественно, хорошо – по тогдашним советским меркам.
Однако увлечение камнями осталось. Что, впрочем, далеко не случайно: ведь, по сути, искусственные камни – это одно из самых перспективных направлений в создании конструкционных материалов будущего. Да-да, вместе, например, с композитами или алюминием, легированным углеродными нанотрубками. Мы ведь не зря в начале книги, заглядывая в будущее уже Седьмого технологического уклада, сказали о прозрачной стали. Пример-то – не очень-то и сказочный. Ибо прозрачная, жароупорная броня существует и сегодня. Как искусственный драгоценный камень.
В это, наверное, трудно поверить тем, для кого понятие «высокие технологии» сводится лишь к кремнию и написанию программ, к айпэдам и айфонам. Но специалисты давно говорят о новом «каменном веке». Еще в 1983 году корпорация «Мацусита Дэнки» показывала целиком керамический автомобильный мотор. Позже Владимир Попов резал своей керамикой стекло. Ну, а для вящего эффекта отметим, что каменные детали есть, например, в зенитных ракетах с тепловыми головками самонаведения.

ШПИНЕЛЬ

Есть такой очень красивый, редкий в природе камень – шпинель. Некоторые из его видов числятся как драгоценные. Прекрасные шпинели есть в центре корон и британского монарха, и русских царей. Шпинель представляет из себя алюминат магния MgAl2O4. Но шпинель, как оказалось, отлично пропускает сквозь себя и инфракрасное, и ультрафиолетовое излучения (хотя и не по всей ширине спектра). В шпинели нет двупреломления – сквозь нее ты не видишь сразу два образа одного и того же предмета.
А это – идеальный материал для обтекателей «охотников на самолеты» с тепловыми «глазами». Они смогут видеть цель – горячие сопла двигателей – и в инфракрасном свете, и в ультрафиолетовом диапазоне. Что означает последнее? То, что выброс из реактивного двигателя они увидят как ярко-фиолетовое кольцо. Потому такую ракету страшно трудно обмануть, отстреливая ложные горящие штучки.
Но как ставить на ракеты редкий, драгоценный камень? Пока этого не делается, потому что природная шпинель все-таки стоит слишком много. Пока «головы» ракет переносных зенитных комплексов типа американского «Стингера» или советской «Иглы» делались из фторида магния, MgF2, который пропускает лучи в тепловом и ультрафиолетовом диапазоне (длина волны от 0,12 до 8 микрометров, то есть – от 120 до 8000 нанометров).
ДЛЯ СПРАВКИ: диапазон ультрафиолетового излучения - 10 — 380 нанометров.
Диапазон инфракрасного излучения – от 740 нанометров до 1-2 миллионов нанометров.

Но в процессе производства обтекателей из фторида магния 87% продукции идет в брак. К тому же, РФ лишилась своего производства прозрачных обтекателей – в ходе «реформ» и приватизации специальный завод в Никольском (Пензенская область) оказался разгромленным. Его прессы больше не работают.
Однако фторид магния для ракетных «глаз» плох. Его применяют за неимением лучшего. В чем проблемы? В том, что MgF2 сильно подвержен эрозии и не выдерживает больших температур, теряя при этом свои свойства. А значит, он не подходит для боевых ракет с гиперзвуковыми скоростями. Ведь их оболочка из-за трения в воздухе раскаляется так же, как и «лоб» (или днище) космического корабля, врывающегося в плотные слои атмосферы. Передние кромки крыльев и лоб летательного аппарата на скорости 5 махов (скоростей звука) разогреваются почти до 1200 градусов. Естественно, что ракеты с «глазом» из фторида магния, плавящегося при температуре в 1263 градуса, просто слепнут. А скорость для ракет воздушной войны – фактор критический. Иначе они не смогут поражать ни баллистические ракеты, ни перспективные гиперзвуковые самолеты, ни сверхзвуковые высотные цели.
Потому очень нужно было сделать рывок – создать обтекатели ракет из искусственной шпинели. Сверхпрочной и жароупорной. Шпинель, конечно, более «подслеповата», чем фторид магния, но зато она намного прочнее, ее температура плавления почти вдвое выше.
Американцы занялись этой проблемой с 1964 года. С 1972 года такие же работы пошли и в СССР, в Государственном оптическом институте (ГОИ). Вернее, ГОИ выступил головной организацией, а вообще в программе задействовали много институтов – кто-то работал по синтезу порошков, кто-то - по созданию способов давления и т.д. Но, забегая вперед, скажем, что работа успехом не увенчалась.
Однако военным делом применение искусственной шпинели не исчерпывается. Шпинель нужна и для медицины будущего.
Почему, скажем, не пошел в хирургии сапфировый лазер? Почему не получился полноценный лазерный скальпель? Потому, что сапфир разрушается, не выдерживает высокой нагрузки. Из-за этого лазерные скальпели используют только в микрохирургии, в операциях с кровеносными сосудами. Для глубоких разрезов скальпель на рубиновом лазере не годится: рабочее тело может просто взорваться. Да и делать такие «лучевые скальпели» очень трудно: едва перекосишь оптическую ось сапфира – и все изделие идет насмарку.
Однако немецкий ученый Аккерман предложил: делать лазерные скальпели с использованием шпинели. Тогда они смогут выдерживать нагрузку почти в сотню раз большую. Осталось дело за малым: создать производство искусственной шпинели нужных качеств.
Но, что называется – легко сказать. Американцы, помучившись с этим делом с 1964 года, его потом надолго забросили. Мето¬ды горячего прессования или спекания шпинели оказались не настолько эффективными, чтобы получать изделия нужного качества и размера. Растили монокристалл, а он выходил не того качества. Шпинель крайне тугоплавка – она «тает» при температуре 2135 градусов. Для сравнения: жар для плавления стали - 1450—1520 °C.
Но Мастер не был бы Мастером, если бы не занялся бы и этой каверзной задачей, двинувшись своим путем. Он решил, что незачем заниматься монокристаллом шпинели, когда можно делать шпинель поликристаллическую. Но зато какую!
Впрочем, не будем забегать вперед, читатель.


РОЖДЕНИЕ ПРОРЫВА

Только-только выйдя на свободу в 1989 году, Виктор Иванович решил заняться искусственными драгоценными и полудрагоценными камнями. Сперва – с чисто ювелирными соображениями.
В то время страна неудержимо и страшно впадала в агонию. Экономика шла вразнос. И вот после гибели Советского Союза Мастер покупает первые установки для производства бесцветных сапфиров – лейкосапфиров. Аппараты «Омега» для выращивания монокристаллов лейкосапфира, кстати, и ныне производит Луганск (http://omega-crystals.com/ru/). Делали их с прототипа: печей «Гном», разработанных в ГОИ.
Виктор Петрик действительно выкупил те установки, что были произведены по заказу Минобороны СССР, но после трагедии 1991 года оказались неоплаченными военными. Тогда десять аппаратов в 1992-м приобрел Мастер, и столько же – директор Института геологоразведки Виктор Рябков. Виктор Иванович долго мешкал, но потом поставил свои машины на заводе «Большевик». Но потом оба они свои «омеги» продали: они были уже неинтересны. Почему? Технология выращивания лейкосапфиров была уже давно устаревшей.
Нужно было двигаться дальше. Когда кристалл растет, он стремится вытеснить из себя все примеси. Именно так происходит зольная очистка алюминия до, что называется, восьми девяток. Так же происходит и при очистке лейкосапфира: вся грязь концентрируется в «пятке» выращиваемого кристалла. Ее остается только отрезать.
Что такое голубой сапфир? Это лейкосапфир, вакансии в решетке коего должны быть на 0,7% заняты титаном. Если вместо титана будет хром, тогда сапфир приобретет красный цвет. Из лейкосапфира можно сделать и рубин: кристаллическая решетка-то одинаковая.
- В свое время профессор Мусатов из ГОИ пробовал вырастить гигантский рубин для лазеров. Но у него не вышло. Он пытался брать иридиевый тигель. Но хром взаимодействует даже с иридием, - рассказывает Виктор Иванович. – Бернелли в конце девятнадцатого века использовал для получения рубина бестигельный метод. Сыпал порошок в водородное пламя.
Нам же удалось вырастить рубин в молибденовой «лодке». Чем же был защищен молибден? По методу Хачатура Багдасарова: «лодка» с расплавом вплывает в холодную зону. В носик «лодки» вводится маленький природный рубин-затравка. И расплав, охлаждаясь, начинает кристаллизоваться вокруг затравки. Багдасаров первым в мире смог вырастить – именно таким образом – кристалл не по вертикали, а по горизонтали. За что его в свое время сильно били и тоже пытались выставить лжеученым.
Что сделал я? Сначала вырастил лейкосапфир. Потом снова размягчил его и насыпал сверху хром. Ионы хрома, не соприкасаясь со стенками тигля, стали диффундировать в кристалл, занимая каждый свое место. Так получился рубин…
Следующей целью стала шпинель. Цветом такая же, как и рубин, о с фиолетовым оттенком. Потому ее поэтично называют «рубином цвета запекшейся голубиной крови». Этот оттенок придает шпинели содержащийся в ней магний.
- Засев за литературу, я обнаружил работу немца, доктора Аккермана, где он говорил о том, что лазерный скальпель не на рубине, а на шпинели – это настоящий прорыв в лазерной хирургии, - продолжает Мастер. – Аккерман уповал на природную, монокристаллическую шпинель. Прочитав такое, решаю: переключусь с ювелирной цели на другую, займусь-ка конструкционной шпинелью!
И тут Виктор Иванович приходит к выводу: для этого потребна на монокристаллическая, а поликристаллическая шпинель. Потому что она по части «трещиноватости» в 14 с половиной раз более стойка, чем монокристалл. Поясним: монокристалл – это действительно один, сплошной кристалл. Поликристалл – это множество «кубиков», отдельных кристаллов, спаянных в одно «тело». Эти кристаллики расположены упорядоченно, и если один из них трескается, то трещина не выходит за его границы. А уж если трескается монокристалл – то раскалывается сразу по всей протяженности. Особенно при перегреве кристалла такое случается, например – с сапфирами.
Но надо было синтезировать поликристаллическую шпинель. Поиски в литературе показали, что ученые в США и у нас давно пытаются это сделать. Для чего? Для тех самых прозрачных ракетных обтекателей, проницаемых и для радиоволн, и для инфракрасных лучей, и для ультрафиолета. Но в тот момент Мастер думал об оружии в последнюю очередь. Приоритетом были именно скальпели для лазерной хирургии.
Как же добиться желаемого, если здесь потерпели неудачу и советские, и американские исследователи. Мастер приходит к выводу: они пытались синтезировать поликристаллическую шпинель из сульфатов магния и алюминия. Для синтеза пробовали подобрать температуры, давления и всевозможные добавки.
Мастер сам заказывает специальные прессы на Армавирском заводе испытательных машин: умопомрачающе дорогие. Ведь их пресс-формы должны быть сделаны методом порошковой металлургии из циркония и молибдена. Никакой другой металл просто не выдержит крайне высоких, рабочих температур и давления, просто «поплывет». Но эти сложные прессы, способные долго и понемногу, повинуясь программе, наращивать давление, ему понадобились несколько в ином процессе, нежели тот, что пробовали использовать в США и СССР.
В.Петрик применяет для получения поликристаллической шпинели тот самый золь-гель метод, что он использовал еще в исправительной колонии для того, чтобы сделать опал. Он растворил в изопропиловом спирте алюминий: варите в спирте стружку. В другой колбе вы растворяете магний. Затем эти растворы сливались в нужном процентом соотношении: 60 на 40. А потом начиналось выпаривание. Так что никаких тайн тут не было и нет. Секрет – в добавляемом в процесс ингибиторе-замедлителе. Он приостанавливает рост частиц. И получаются наноразмерные частички.
Полученный мельчайший порошок Мастер высыпал в пуансон матрицы и сжимал их, и спекал при температуре в 600 градусов. В полученный спёк затем помещался в те самые армавирские прессы, которые при высокой температуре начинали сдавливать его. Благодаря добавке из лития или скандия начинается рост поликристаллитиков. Они растут как раз вокруг крупиц добавки. А поскольку все происходит под давлением, эти кристаллики упорядочиваются, ориентируются в одном направлении. Из-за этой ориентированности вы получаете прозрачный в видимом диапазоне материал.

БАГДАСАРЯН СВИДЕТЕЛЬСТВУЕТ
Итак, член-корреспондент РАН Хачатур Багдасарян, получил в руки эту синтезированную шпинель, проверил ее характеристики в декабре 2009-го – и дал заключение: да, это – прозрачная поликристаллическая шпинель! Но каким образом она сработана? Он сам бы хотел на это взглянуть, увидев исходные порошки. А когда увидел – стал другом Мастера.
Действительно, два из пяти представленных на испытания в Институт кристаллографии РАН образца шпинели Мастера обладали частичной прозрачностью для лучей с длиной волн до 200 нанометров, очень хорошей – в диапазоне волн в 400-900 нм. Ну, а самая лучшая прозрачность у них отмечена в диапазоне 3-5 тысяч нанометров. (Еще раз для сравнения: фторид магния пропускает волны длиной от 120 до 8000 нанометров. Диапазон ультрафиолетового излучения - 10 — 380 нанометров. Диапазон инфракрасного излучения – от 740 нанометров до 1-2 миллионов нанометров.
То есть, ракета с передним окном из такой шпинели действительно увидит и тепловое, и ультрафиолетовое излучение самолета, а вернее – горячих сопел его двигателей.
Ну что ж, познакомимся поподробнее со мнением Багдасарова, человека в кристаллах весьма сведущего. Тем более, что главные направления его научной деятельности - создание теоретических основ синтеза тугоплавких монокристаллов и развитие лазерной техники.
- Виктор Иванович Петрик открывает новую страницу в металлургии и вообще в области создания новых материалов, - говорит он. - Это совершенно новая область, которой очень много занимаются в Соединенных Штатах, в Японии и у нас в России. Именно Петрик делает это дело очень успешно.
…Развиваются две технологии: золь-гель технология, которую продвигает Петрик, и технология прямого плавления вещества, которую развиваю я. Думаю, что технология Петрика - более перспективная, поскольку затраты экономические меньшие, энергетические – тоже меньшие и.т.д. Нужно отдать должное Виктору Ивановичу: он очень открыт для дискуссии, он не создавал никаких трудностей в общении, он принимал активное участие во всех наших начинаниях. Все, что мы хотели, мы все получили. Среди крупных достижений - это шпинель, температура плавления которой - 2135 градусов.
Это очень высокая температура и крайне агрессивная среда. Где тот материал, в котором это можно расплавить? Виктор Иванович показал, что такую шпинель можно получить не путем получения монокристалла, а через создание поликристаллов, причем при температурах от 900 до 1200 градусов. Думаю, что это – очень перспективное дело.
- Вторая работа, которая, на мой взгляд, очень интересная, это работа с кремнием. Я думаю, что энергетическая проблема по кремнию будет решена с помощью работ Виктора Ивановича Петрика.
…Эти работы являются прорывными, они открывают новую страницу в науке, поскольку нужно дать объяснение всем явлениям, которые он наблюдает, и поэтому с ним активно должны работать теоретики, объясняя все явления, которые он наблюдает. Если соединить фундаментальные исследования и прикладные работы Виктора Ивановича, то мы получим хорошие результаты. Мы поймем, в конце концов, что такое наночастица, как она взаимодействует с другими наночастицами и со средой, и получим совершенно новые результаты, которые считались ранее недостижимыми. Благодаря экспериментам, которые он проводит, он получил очень хорошие результаты, их мы можем использовать в практике.
Нужно повернуть к работам Виктора Ивановича металлургов. Нужно изучать наночастицы металлов, их особенности, их нескомпенсированность связей – и так далее. Надо изучать, как влияют эти нескомпенсированные связи на физические свойства керамических материалов.
... Обязательно должна быть оказана государственная и научная помощь Виктору Ивановичу, потому что он идет впереди всей планеты. Он проводит чудесные эксперименты, которые нужно объяснять. Почему получаются эти результаты, а не какие-то другие? Здесь очень важна роль теоретиков, которые занимаются проблемами новых материалов, и государство должно поддерживать эти работы. Это - новая страница в материаловедении.
Материаловедение состоит из двух частей. Первая связана с плавлением исходного вещества, и к этому направлению принадлежу я. И есть часть, связанная с твердым состоянием вещества, с использованием наночастиц для получения поликристаллов. Этому направлению принадлежит Виктор Петрик. Нужно объединять эти работы, привлекать специалистов по металлам и по керамике, объединять усилия разных научных организаций. Они должны создавать совершенно новую теорию получения новых материалов…
Отметим, что история самого Хачатура Багдасарова – ярчайшее свидетельство глубокой и давней болезни отечественной науки. Дело в том, что, несмотря на мировое признание его технологического прорыва, успешное внедрение багдасаровского метода в производство и Государственную премию 1972 г., его еще в СССР пытались объявить лжеученым. Кто? Теоретики. Те, которые презрительно называли его «технологом» и замыкались в своих формулах, вместо того, чтобы стоять рядом с экспериментатором в лаборатории и пытаться объяснить то, что выходило на ПРАКТИКЕ и противоречило их теориям. Наоборот, они стаей воронья налетали на Багдасарова и пытались его заклевать, только критикуя его метод. При этом ни один из них ничего прорывного создавал: вся энергия этих теоретиков уходила на то, чтобы загрызть других. Один из них в Институте кристаллографии, Ч., даже уволил сотрудницу своего подразделения, когда та вырастила кристалл нафталина, причем с нарушением признанной теории. По принципу: опровергаешь устоявшиеся представления и тоерию – тем хуже для тебя. И клевали Хачатура Сааковича долго – до конца 1980-х.
Потом, когда метод Багдасарова завоевал мировое признание, заговорили иначе: мол, не он один его создавал, «мы тоже пахали». В общем, вот вам доказательство «беспристрастности» отечественной науки.
Как все это похоже на историю самого Виктора Петрика! Впрочем, Х.Багдасарову еще повезло: его в свое время подкрепил своим авторитетом великий Мстислав Келдыш, в 1961-1975 гг. – президент АН СССР, а в 1975-1978 гг. – член президиума Академии. Хачатур Багдасаров, отказавшись от должности главы строящейся Черноголовки, по поручению правительства СССР создал филиал Института кристаллографии. В РФ, увы, уничтоженный.
Мнение этого профессионала о шпинели Петрика для нас гораздо ценнее, чем злобствования старцев из Комиссии по лженауке, которые ничего великого в жизни не создали и спецами по части кристаллов не выступают. Все эти истории говорят о том, что наука наша серьезно больна: она пытается уничтожать новаторов вместо того, чтобы им помогать.
Какие же возможности открывают перед страной поликристаллы Виктора Петрика?
(Продолжение следует)



Tags: КБЛ, Максим Калашников, наука, новая русская цивилизация, футуро
Subscribe
promo escapistus march 30, 2013 21:47 134
Buy for 10 tokens
Однажды академик Петр Капица принимал у студентов физфака МГУ сложный экзамен. Войдя в аудиторию, он объявил, что на этот раз билеты тащить не будем, а будем все отвечать на один единственный вопрос. Можно пользоваться справочниками, учебниками, чем угодно, искать ответ всем курсом, даже…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 2 comments